
Continues on page 3

TMProProCenturaCentura
Hot Ideas for Centura® DevelopersHot Ideas for Centura® Developerswww.ProPublishing.com

1 Control the Calendar
Christian Astor

2 And the Winner Is . . .
Mark Hunter

6 JobShop

7 Return Call
Christian Schubert

9 Centura Tip: What’s This?
Sven O. Rimmelspacher

11 Sorting Tables List View Style
Sven O. Rimmelspacher

February 2000
Volume 5, Number 2

Control the Calendar
Christian Astor

Here are samples of custom control

classes, showing how to use two of

the 22 Windows Common Controls:

Date and Time Picker, and Month

Calendar. You’ll find heaps of useful

declarations and examples in this

article and the accompanying

source code!

already defining some of them. Interacting with the
controls at low level is done almost
completely through messaging, using
pointers to data structures. The data
structures must be written and read
using the CStruct family of functions.

My class definitions encapsulate this tedious work in class
functions, so your application interacts with the objects
through ordinary function calls.

Listing 1. Retrieve data from the custom control using
messaging.

◆ Function: GetCurDateSelected
◆◆ Description:
◆ Returns

◆◆ Date/Time:
◆◆ Parameters
◆◆ Static Variables
◆ Local variables

◆◆ String: sDate
◆◆ Number: nDateYear
◆◆ Number: nDateMonth
◆◆ Number: nDateDay

◆ Actions
◆◆ Call SalStrSetBufferLength(sDate, 16)
◆◆ Call SendMessageTimeoutA(hWndCalendar,

MCM_GETCURSEL, 0, sDate, 2,0, nReturn)
◆◆ Set nDateYear = CStructGetWord(sDate, 0)
◆◆ Set nDateMonth = CStructGetWord(sDate, 2)
◆◆ Set nDateDay = CStructGetWord(sDate, 6)
◆◆ Return SalDateConstruct(nDateYear,

nDateMonth, nDateDay, 0, 0, 0)

The Windows Common Control
classes provide a lot of
functionality to Centura

applications, and it’s not difficult to
integrate them into your code. The
class definitions in my sample
application can be included directly,
and the supporting external functions
and constants should require only
minor editing if your application is

To be able to
handle Common
Controls messages, I
must redefine the
function

S Q L W i n d o w s

3 2

example in Listing 1, in which my cMonthCalendar class
function sends a message to the month calendar control
asking for the currently selected date, passing a string in
the fourth parameter (lParam) to hold the answer, then
extracts the numeric date components from the altered
string using Cstruct functions.

The same technique is used to send data to the
control. In Listing 2, I set the “today” date in the calendar.
This normally defaults to the system date, but can be
overridden using a low-level message, which has been
encapsulated in a class function.

SendMessageTimeoutA(),
which allows the
app to receive data
in a LPVOID string
pointed to by
lParam after the
message has
returned. See an

ProProCenturaCentura

2 Centura Pro February 2000 www.ProPublishing.com

W

Continues on page TK

Nails Mark Hunter, Glue Dian Schaffhauser, Grease Shelley Doyle,
Paint Paul Gould, Licensed but not bonded and insured Mocha

Centura Pro (ISSN: 1093-2100) is published monthly
(12 times per year) by Pro Publishing, PO Box 2399,
Nevada City, CA 95959.

POSTMASTER: Send address changes to
Centura Pro, PO Box 2399, Nevada City, CA 95959.

Copyright © 2000 by Pro Publishing. All rights reserved.
No part of this periodical may be used or reproduced in any
fashion whatsoever (except in the case of brief quotations
embodied in critical articles and reviews) without the prior
written consent of Pro Publishing. Printed in the United States
of America.

Centura Pro is a trademark of Pro Publishing. Other brand and
product names are trademarks or registered trademarks of
their respective holders.

This publication is intended as a general guide. It covers
a highly technical and complex subject and should not be
used for making decisions concerning specific products or
applications. This publication is sold as is, without warranty
of any kind, either express or implied, respecting the contents

of this publication, including but not limited to implied
warranties for the publication, performance, quality,
merchantability, or fitness for any particular purpose.
Pro Publishing, shall not be liable to the purchaser or any
other person or entity with respect to any liability, loss, or
damage caused or alleged to be caused directly or indirectly
by this publication. Articles published in Centura Pro reflect
the views of their authors; they may or may not reflect the
view of Pro Publishing. Opinions expressed by Centura
Software employees are their own and do not necessarily
reflect the views of the company.

Subscription information: To order, call Pro Publishing at
530-265-4082. Cost of domestic subscriptions: 12 issues, $119;
Canada: 12 issues, $129. Other countries: 12 issues, $139.
Ask about source code disk pricing. Individual issues cost $15.
All funds must be in U.S. currency.

Call Centura Software Corp. at 650-596-3400.

If you have questions, ideas for bribing authors, or would just
love to chat about what you’re doing with Centura products,
contact us via one of the means at right.

Centura Pro on the Web
www.ProPublishing.com

Editorial Department
Phone: 818-249-1364

Fax: 818-246-0487
E-mail: centurapro@visto.net

Subscription Services
Phone: 530-265-4082

Fax: 530-265-0368
E-mail: shelley@propublishing.com

Mail
Pro Publishing

PO Box 2399
Nevada City, CA 95959

Contact Us

And the Winner Is . . .
Mark Hunter

e recently finished counting the votes
from the Centura Pro Mentor Awards. It
was our intent to honor the most

valuable contributors on the Centura Internet
newsgroups, as chosen by the newsgroup
participants themselves. Centura Pro is a great source of
articles for explaining a topic at length, and the
newsgroups are an active, speedy way of getting tips and
answers to maddening questions (usually). No one pays
much attention to the dedicated efforts of the newsgroup
contributors, so Pro Publishing decided to provide some
financial recognition.

The first place winner is Neil Rashbrook of Parkway
Computer Consultants in the United Kingdom. Neil’s
voters were adamant that he is “the man.” Some were
particularly fond of his tool, Network-VTExplorer, which
adds network exploration capability to the
cDesktopListBox class from Visual tool chest. Neil gets a
$100 gift certificate to amazon.com.

Second prize goes to Michael Vandine, the Australian
SQLBase expert. The voters consistently praised the value
of his posts. Michael responds, “I am very happy that I
can help so many people with their questions. Thanks to
everyone who voted for me! It really is nice to get some
feedback showing that my efforts are appreciated!”

Indeed they are, Michael, and a $50 gift certificate
to amazon.com is on its way to you.
Third prize goes to Christian Astor, a Frenchman

active in the Centura Team Developer and
Advanced Programming groups, among others. He

also has many contributions in the Source Code forum.
Christian receives a $30 gift certificate to amazon.com.

Each person got only one vote, and occasionally
people expressed a wish to vote for more than one
contributor. Several other contributors received votes, and
all who sent in votes were enthusiastic in support of their
favorites. I enjoyed reading the submitted vote messages,
and enjoyed being able to provide some money and
recognition to some truly valuable people. To all who
voted, thank you! I hope we can do it again sometime.

He’s baaaaaack . . .
Gianluca Pivato is at it again. Most of his previous work
has been specifically related to Centura Team Developer.
Now he’s about to release more broadly focused tools that
allow you to call any Java class as if it were a COM server.
Jasper and JasperX should be coming to market around
the time you read this. Says Gianluca, “You need JDK1.2
or JRE1.2 installed, of course. There is only one sample

Centura Pro February 2000 3www.ProPublishing.com

Listing 2. Send data to the custom control, allocating and freeing
a memory buffer in the process.

◆ Function: SetToday
◆◆ Description:
◆◆ Returns
◆ Parameters

◆◆ Date/Time: dDate
◆◆ Static Variables
Local variables

◆◆ String: sDate
◆◆ Number: nDateYear
◆◆ Number: nDateMonth
◆◆ Number: nDateDay
◆◆ Number: nAddr

◆ Actions
◆◆ Call SalDateToStr(dDate, sDate)
◆ If SalStrIsValidDateTime(sDate)

◆◆ Set nDateYear = SalDateYear(dDate)
◆◆ Set nDateMonth = SalDateMonth(dDate)
◆◆ Set nDateDay = SalDateDay(dDate)
◆◆ Set nAddr = CStructAllocFarMem(16)
◆◆ Call SalStrSetBufferLength(sDate, 16)
◆◆ Call CStructPutWord(sDate, 0, nDateYear)
◆◆ Call CStructPutWord(sDate, 2,nDateMonth)
◆◆ Call CStructPutWord(sDate, 6,nDateDay)
◆◆ Call CStructPutWord(sDate, 8,1)
◆◆ Call CStructPutWord(sDate, 10,1)
◆◆ Call CStructPutWord(sDate, 12,1)
◆◆ Call CStructCopyToFarMem(nAddr, sDate, 16)
◆◆ Call SalSendMsg(hWndCalendar,

MCM_SETTODAY,0,nAddr)
◆◆ Call CStructFreeFarMem(nAddr)

◆ Else
◆◆ Call SalMessageBox('Bad date format !',

'Error', MB_Ok | MB_IconStop)

There’s one exception to the messaging paradigm:
The Common Control class itself must be registered using
a function call to InitCommonControlsEx() before any
other interaction can take place.

Month Calendar
In the sample application, frmCalendar contains the basic
calendar controls, plus a large number of other
controls that let you to change the appearance
and behavior of the calendar. In Figure 1, for
example, you can see that the
MCS_MULTISELECT style has been turned on,
allowing the user to drag across a range of days
in the calendar rather than just a single day.

The Common Control class is
MONTHCAL_CLASS (in C) or SysMonthCal32
(in CTD).

To initialize COMCTL32.DLL and register
the class, the first function called must be
InitCommonControlsEx() as shown in Listing 3,
with flag ICC_DATE_CLASSES (the first
parameter is 8: the size of the
INITCOMMONCONTROLSEX structure).

Listing 3. You must initialize the Common Controls DLL before
any other interaction.

On SAM_AppStartup
Call InitCommonControlsEx(8, ICC_DATE_CLASSES)

Styles
MCS_DAYSTATE—This style allows you to display
days in bold (the calendar must be re-created to
change it at runtime).

MCS_MULTISELECT—The user can select a range of
dates, instead of only one (the calendar must be re-
created to change this style at runtime).

MCS_WEEKNUMBERS—Week numbers will be
displayed to the left of calendar.

MCS_NOTODAYCIRCLE—No circle will be drawn
around the “today” date.

MCS_NOTODAY—The “today” date won’t be
displayed at the bottom of calendar.

Messages
MCM_GETCURSEL—Retrieves the currently selected
date. The lParam parameter receives the date in a
SYSTEMTIME structure. This structure has the
following form:

{
WORD wYear;
WORD wMonth;
WORD wDayOfWeek;
WORD wDay;
WORD wHour;
WORD wMinute;
WORD wSecond;
WORD wMilliseconds;

}

Control the Calendar . . .
Continued from page 1

Figure 1. Some of the many ways to manipulate the calendar control.

4 Centura Pro February 2000 www.ProPublishing.com

I call the function SendMessageTimeoutA() to get a
string pointer in lParam.

The parameters I want to get are wYear, wMonth, and
wDay; so I call CstructGetWord() with offsets 0, 2, and 6,
then call SalDateConstruct() to build the date.

MCM_SETCURSEL—It’s the reverse of
MCM_GETCURSEL: I pass a SYSTEMTIME structure
in lParam. It must first be initialized with
CstructPutWord().

MCM_GETMAXSELCOUNT—It gets the maximum
date range that can be selected. It’s simple; the
returned value from the message gives me this value.

MCM_SETMAXSELCOUNT—It sets the maximum
date range that can be selected. The value must be
passed in wParam.

MCM_GETSELRANGE—It receives two dates that
represent the range actually selected by the user. It’s
like MCM_GETCURSEL but with two SYSTEMTIME
structures returned. So I call CstructGetWord() with
offsets 0, 2, 6 for the first one and 16, 18, 22 for the
second one.

MCM_SETSELRANGE—It selects a range between
two dates. I must pass two SYSTEMTIME structures
in lParam; they must be initialized with
CstructPutWord().

MCM_GETMONTHRANGE—It retrieves the range of
visible months. The wParam parameter indicates
which scope to be retrieved: GMR_DAYSTATE for
preceding and trailing months or GMR_VISIBLE for
the current month entirely displayed. The lParam
parameter returns two SYSTEMTIME structures. The
value returned by the message represents the number
of visible months displayed between the two dates of
lParam.

MCM_SETDAYSTATE—Displays some visible days in
bold. The wParam parameter is the value returned by
MCM_GETMONTHRANGE with wParam.

GMR_DAYSTATE—The lParam parameter is a
pointer to MONTHDAYSTATE arrays of bits (1-31).
When a bit is set to on, the corresponding day will be
in bold (the number of arrays is given by wParam).

MCM_GETMINREQRECT—It gets the minimum size
(RECT structure) required to display a full month.
The RECT structure is returned in lParam. I call
CstructGetLong() with offsets 0, 4, 8, 12.

MCM_SETCOLOR—This message sets the color for a
given part of the calendar. The wParam parameter
contains the part (Background, text, title, etc). The
lParam parameter contains the RGB color to be set.

MCM_GETCOLOR—Retrieves the color for a given
part of the calendar. The wParam parameter contains
the part (Background, text, title, etc). The returned
value is the RGB color of the given part.

MCM_SETTODAY—Sets the “today” date. The
lParam parameter must contain a SYSTEMTIME
structure.

MCM_GETTODAY—Retrieves the date for the
“today” date. The date is returned in lParam
(SYSTEMTIME structure).

MCM_HITTEST—This messages allows you to
determine which part of the calendar is under the
mouse cursor. The lParam parameter points to a
MCHITTESTINFO structure which has the following
form:

{
UINT cbSize;
POINT pt;
UINT uHit;
SYSTEMTIME st;
}

So I must pass 32 for the cbSize (4+8+4+16) in offset 0
and X and Y coordinates in offsets 4 and 8. The Hit Test is
the returned value.

MCM_SETFIRSTDAYOFWEEK—Sets the first day of
the week (the default day is Monday) where a week
begins. The lParam parameter contains the new first
day (Monday = 0, Tuesday = 1,..., Sunday = 6).

MCM_GETFIRSTDAYOFWEEK—Retrieves the first
day of the week. The low word of the value returned
is the current first day of the week.

MCM_GETRANGE—It receives two dates that
represent the minimum and maximum dates allowed.
The lParam parameter receives two SYSTEMTIME
structures.

MCM_SETRANGE—It sets the minimum and/or the
maximum dates allowed. The wParam contains a flag
indicating which dates are set (GDTR_MIN and/or
GDTR_MAX). I must pass two SYSTEMTIME
structures in lParam: they must be initialized with
CstructPutWord().

Centura Pro February 2000 5www.ProPublishing.com

MCM_GETMONTHDELTA—Retrieves the scroll rate
for a month (when the user clicks on arrows Left or
Right). The returned value contains the month delta.

MCM_SETMONTHDELTA—Sets the month delta.
The month delta must be set in wParam parameter.

MCM_GETMAXTODAYWIDTH—Retrieves the
maximum width of the “today” string. The returned
value contains this width in pixels.

Date and Time Picker
In the sample application, the Date Time Picker form
contains many child controls demonstrating how to
manipulate the appearance and behavior of the custom
control. See Figure 2.

The Common Control class is
DATETIMEPICK_CLASS (in C) or SysDateTimePick32 (in
CTD). To initialize COMCTL32.DLL and register the class,
the first function called must be InitCommonControlsEx()
with the same flag ICC_DATE_CLASSES as for Calendar
control.

Styles
In the sample application, a dialog box (Figure 3) is used
to select multiple styles.

DTS_APPCANPARSE—This style allows the owner to
parse user input and take necessary action (the user
can use F2 to edit the client part of the control).

DTS_LONGDATEFORMAT—Displays the date in
long format.

DTS_RIGHTALIGN—The drop-down Month
Calendar will be right-aligned with the control (left-
aligned by default).

DTS_SHOWNONE—Add a check box that user can
check once he has selected a date (Date and Time
Picker must be re-created to change this style at
runtime).

DTS_SHORTDATEFORMAT—Displays the date in
short format.

DTS_TIMEFORMAT—Displays a time instead of a
date (Date and Time Picker must be re-created to
change this style at runtime).

DTS_UPDOWN—Uses an Up-Down control instead
of a drop-down Month Calendar (by default). (Date
and Time Picker must be re-created to change this
style at runtime).

Messages
DTM_GETSYSTEMTIME—Retrieves the current
selected date and time of the control. The lParam
parameter receives the date and time in a
SYSTEMTIME structure. So I call CstructGetWord()
with offsets 0, 2, 6, 8, 10, 12.

DTM_SETSYSTEMTIME—Sets the date and time for
the control. The wParam parameter must be
GDT_VALID or GDT_NONE (which unchecks the
eventual check box if the style DTS_SHOWNONE is
set and ignores lParam). The lParam must contain a
SYSTEMTIME structure.

DTM_GETRANGE—It receives two dates that
represent the minimum and maximum dates allowed.
The lParam parameter receives two SYSTEMTIME
structures.

DTM_SETRANGE—It sets the minimum and/or the

Figure 2. Use the code attached to the child
controls as the basis for your own logic.

Figure 3. Multiple styles may be selected. If
none are selected, DTS_SHORTDATEFORMAT
becomes the default.

maximum dates allowed. The
wParam contains a flag
indicating which dates are set

6 Centura Pro February 2000 www.ProPublishing.com

(GDTR_MIN and/or GDTR_MAX). I must pass two
SYSTEMTIME structures in lParam: they must be
initialized with CstructPutWord().

DTM_SETFORMAT—Sets the string format for the
control. The string is passed in the lParam with the
function SendMessageString(). Valid formats can be
found in the Win32 Help file at functions
GetDateFormat() and GetTimeFormat().

DTM_SETMCCOLOR—This message sets the color
for a given part of the drop-down Month Calendar.
The wParam parameter contains the part
(Background, text, title, etc). The lParam parameter
contains the RGB color to be set.

DTM_GETMCCOLOR—Retrieves the color for a
given part of the of the drop-down Month Calendar.
The wParam parameter contains the part
(Background, text, title, etc). The returned value is the
RGB color of the given part.

DTM_GETMONTHCAL—Retrieves the handle of the
drop-down Month Calendar. The return value is this
handle, which is only valid between
DTN_DROPDOWN and DTN_CLOSEUP
notifications.

DTM_SETMCFONT—Sets the font for dates
displayed in the drop-down Month Calendar. The
handle of the font is passed in the wParam parameter.

The lParam parameter is a Boolean to indicate if the
Calendar must be redrawn immediately. (If you set a
big font… you’ll have an enormous Calendar).

DTM_GETMCFONT—Retrieves the font used by the
drop-down Month Calendar. The returned value
contains the handle of this font.

Sample source code
The sample application, CALENDAR.APT, is saved as
text, but it assumes CTD version 1.5. If you’re using CTD
1.1, simply edit WIN32APISMALL.APL and change the
external function library declaration STRC15.DLL to end
in “11” rather than “15”.

Naturally, you may find that your applications
already define some of the external functions used by the
sample applications. The definitions for the Cstruct
functions, and for the Windows API functions needed
here, are contained in WIN32APISMALL.APL, along with
a few Windows constants. The calendar-related system
constants defined in this article are contained in
COMMCTRL.APL. CP

Download CALENDARCONTROL.ZIP from this issue’s
Table of Contents at www.ProPublishing.com or find it on
this month’s Companion Disk.

Christian Astor has been a SQLWindows/Centura developer since 1993.

He’s also a Visual C++ programmer (C and API Win32). He’s currently

working at Maguid (SSII) for Alcatel CIT. Christian is addicted to graphics,

animation, 3D. He can be reached at castorix@club-internet.fr or

christian.astor@alcatel.fr.

✸
JobShop!

List your Centura-related positions in a future issue of

Centura Pro! Send details to editor@propublishing.com.

Include your contact details. We guarantee publication of

only those positions that sound truly intriguing or that have

high compensation.

Management Recruiters International
Programmers
A leading U.S.-based international insurance organization—the

largest underwriter of commercial and industrial coverage—
wants to hire four developers with two to three years of

programming experience in Centura and/or SQLWindows and VB

Scripting. The jobs are based in Delaware and New York. Excellent

salary and bonus structure, including relocation assistance.

Contact
Liz Kelly or Chris Sherwood, Management Recruiters

International, 405-607-2425, fax 405-607-2428

Careers@mriokcnorth.com Reference: Centura Programmer

ProProCenturaCentura

functions that could be useful for developers. This month
we’ll look at the Microsoft Telephone API (TAPI).

What TAPI’s good for
A detailed description of TAPI would be far beyond the
scope of this article, so let this short introduction begin with
some words from Chris Sells, author of Windows Telephony
Programming: “TAPI was designed to contain the collective
features of all of the telephony equipment and all of the
telephony communications protocols on the planet.”

Unfortunately, the result isn’t easy to understand.
There are at least 120 different functions with lots of flags
and return codes. Using TAPI you can control devices

directly attached to your computer or
attached via network, make calls or
receive them, answer calls
automatically, record voice messages,
redirect calls to a different phone

number, distinguish between different services (voice, fax,
or data), and lots more.

This article, however, will pick out only a few of those
features. I’m going to show how to trigger a call from
within Centura Team Developer, how to be notified of an
incoming call, and how to extract information about the
caller (such as the telephone number). In most cases you
encounter, this will be sufficient. If you require more
information, you’ll find additional resources in the
sidebar, “Call Center,” accompanying this article.

How TAPI works
If you want to control some piece of hardware, you’ll
need a suitable driver for it (that’s probably nothing new).
TAPI drivers for more common communication devices
like standard modems are already included in Windows
95, 98, and NT 4.0.

So if you put some less common device into your PC
(ISDN card, or cable modem) or connect your phone to

the COM port, you’ll have to install a
manufacturer-supplied driver (TSPI)
that “knows” how to handle this
device. Programming for different
telephony devices is quite similar

Figure 1. TAPI architecture.

Return Call
Christian Schubert

I He’s back! The author takes his

theoretical work with callbacks and

makes it practical!

n “I’ll Call You Back” in the
December 1999 issue of Centura
Pro, I showed a way to use

callbacks with CTD. Now I’ll offer a
couple of examples of callback

because the device-specific functions are mapped into a
common set of functions: TAPI. Figure 1 shows the
different layers between a piece of communications
hardware and an application.

The TSPI driver will be able to tell a TAPI application
which features are available for this specific device. For
example, a modem will surely be able to dial a given
number using touch tones or pulse dial, but it won’t
necessarily be able to detect a caller’s phone number (at
least not every telephone provider supports the
transmission of caller information via analog lines). So an
application can determine which features are supported
and can prevent the user from selecting unsupported
options.

Remarkable facts about TAPI programming
Some of the functions we encounter in TAPI
programming work asynchronously. That means that the
effects of a functions won’t necessarily be visible when the

S Q L W i n d o w s

3 2

Centura Pro February 2000 7www.ProPublishing.com

8 Centura Pro February 2000 www.ProPublishing.com

function returns. This is also the main reason for using a
callback function (remember, this article was meant to
deal with callback functions). For example, when dialing a
number using the function lineMakeCall, the function
returns right after it has transmitted the necessary
command to the communications hardware. If it would
wait until there were a response from the device, the
application could be blocked for several seconds (go off
hook, wait for dialtone, dial, wait for response, and so on).
Instead a callback is sent when the response from the
communication device is available. The response could be
a positive one (call was successful) or a negative one.

There’s one more thing to have a look at: Some of the
asynchronous functions take pointers to numbers
(LPHANDLE) as parameters that only point to valid data
after a decent callback has been received. However, this is
a problem for CTD. Receive parameters are evaluated
after calling an external function, right before the control
is returned to the application (but in most cases before a
callback was received). At this time, the values aren’t yet
valid. Fortunately, there’s a way to get the desired values.
Instead of defining such parameters as Receive Number,
we define them as Receive String: LPVOID. Obviously,
when using this, a real pointer to a string is submitted,
which remains valid even after the external function call
has returned and until the callback is received. Then the
numeric value can be extracted using CStructGetLong
(see “The Sample Applications” section).

Steps to making a call
I won’t explain the TAPI functions used in the samples in
detail; only enough to understand how it works. For a
further explanation see below.

The following functions are required to make a call, in
this exact sequence:

1. lineInitialize. Initializes the whole API and takes the
pointer to the callback mentioned above. You should
use lineInitializeEx instead when your target platform
supports TAPI 2.0 and above.

2. lineGetDevCaps (optional). Elicits useful information
about the available lines and capabilities of each.

3. lineOpen. Opens one of the existing lines and returns
a line handle. Line events will be sent to the callback
function if privilege parameter is

LINECALLPRIVILEGE_MONITOR or
LINECALLPRIVILEGE_OWNER.

4. lineMakeCall. Starts a call using the line returned by
the lineOpen.

5. lineHold (optional). After successfully establishing a
connection put the call on hold; call handle required.

6. lineUnhold (optional). Unhold the call.

7. lineDrop. Hang up; call handle required.

8. lineDeallocateCall. Clean up all remains of a call.

9. lineClose. Close the current line.

10. lineShutdown. Shut down TAPI.

Caller detection
One of the really “fine” features of TAPI is the capability
of retrieving information about the calling party before
answering a call. This can be used to establish a list of
incoming calls when the call can’t be answered
immediately, to retrieve further information about the
caller from a database (think of a call-center), or just to
detect unwanted callers.

Caller information retrieval isn’t supported by every
device. For those that support it, programming is quite
easy. Just make sure the line privilege flag of lineOpen is
LINECALLPRIVILEGE_MONITOR or
LINECALLPRIVILEGE_OWNER. The callback function
bound to the TAPI when calling lineInitialize will be
notified with a LINECALLSTATE_OFFERING message
when a call arrives. lineGetCallInfo can be used to extract
some information.

Figure 2. A demo of tapiRequestMakeCall - DEMO. Figure 3. TAPI_Callback.APT.

Centura Pro February 2000 9www.ProPublishing.com

Tip!Tip!CenturaCentura

The sample applications

Assisted telephony: Tapi_small.APT
I include Tapi_small.apt for reasons of completeness. It
shows the use of the function tapiRequestMakeCall,
which can be used to trigger a call in conjunction with an
existing dialer application (most Windows versions come
with a dialer application). Usage is simple—just one call:

◆◆Call tapiRequestMakeCall
(dfNumber, sAppTitle, STRING_Null, STRING_Null)

However, this call might bring up additional windows
used by the dialer application, which might not be closed
automatically after the call has finished. This function
doesn’t require a callback. If you need a quick solution,
look at it.

TAPI_Callback.APT
The second application uses a handful of basic TAPI
functions to give you an idea of how it can be done.

The upper half contains a combo box to select the line
that should be used for dialing. The line’s configuration
dialog can be called using the Setup button. Not every
device supports a configuration dialog. Lines capable of
making a voice call show a small telephone symbol (not

every TAPI-compatible device supports voice telephony—
think of faxes or data modems). There’s a data field to
enter the phone number and three buttons to dial, hang up,
and put the call on hold (not supported by all devices).

The lower half contains a list view (from Visual
Toolchest) used to show outgoing and incoming calls. The
upper and lower halves are put together with an invisible
splitter.

The callback function
Remember, this article is about callback functions. TAPI
uses one with six parameters defined like this (in C):

typedef void (CALLBACK * LINECALLBACK)(
 DWORD hDevice,
 DWORD dwMessage,
 DWORD dwInstance,
 DWORD dwParam1,
 DWORD dwParam2,
 DWORD dwParam3
);

Using the CALLBACK.APL described in my previous
article, we can define this function like so:

◆◆Call SetCallback ("Callback", 6,
FALSE, hTapiProcAddr, hTapiProcLib)

What’s This?

Sven O. Rimmelspacher—In his January article, “HTML-style

Help for CTD,” Joachim Meyer described the function

TextPopup(), which shows a little help pop-up window for a

control, usually used for the so-called “What’s This?” help.

Here’s how you can implement this little button with a

question mark in your dialogs and call the context help.

The button can be added to a dialog calling the

following function:

 ◆ On WM_NCCREATE
◆◆ Call SetWindowLongA(hWndForm, GWL_EXSTYLE,

WS_EX_CONTEXTHELP |
GetWindowLongA(hWndForm, GWL_EXSTYLE))

Now when you start your application and click on that

new button in the upper right corner of the dialog, the

cursor changes into an arrow with a question mark. Your

next click on a child control should then show the context

help. But be aware that SAM_Help doesn’t work—therefore

we have to use WM_HELP (0x0053) for each control that

should provide a What’s This dialog.

Another problem is that you can’t decide whether the

user used the F1 button for calling the help or used the

What’s This button, because both send the

same WM_HELP message (and even the

HELPINFO structure that’s pointed to by the

lParam of this message doesn’t show a

difference). The solution for this could be that

you trap WM_SYSCOMMAND (0x0112) in the

parent window and check if wParam has the value

SC_CONTEXTHELP (0xF180), which is used when the user

clicks on the What’s This button. Now you can set a flag that

you’re in “What’s This mode” and check this flag on the

WM_HELP messages described above.

Download WHAT_THIS.ZIP from this issue’s table of
contents at www.propublishing.com or find it on this
month’s Companion Disk.

Sven O. Rimmelspacher is a senior developer and project manager at

Pickert & Partner GmbH, a company with a quality management

system. He’s also the author of IntelliDoc, a documentation tool for

SAL code. He can be reached at sven@rimpi.de.

S Q L W i n d o w s

3 2

10 Centura Pro February 2000 www.ProPublishing.com

The return values hTapiProcAddr and hTapiProcLib are
the address of the callback function and the module
handle of the DLL, which are needed for the
lineInitialize function.

The application defines two classes. The call
clsTapiFunc contains basic functionality for
initialization and wrappers for some of the TAPI
functions. clsFrmTapi is a form window class derived
from clsTapiFunc. It defines the callback function,
which is intended to be used as a late-bound function.
Therefore, it doesn’t do anything; it just shows the
function signature you could use in your replacement:

 ◆Function: Callback
...

◆Actions
◆Select Case nMessage

◆◆! status of current call
◆Case LINE_CALLSTATE

◆Select Case nParam1
◆◆! no current connection
◆Case LINECALLSTATE_IDLE

◆◆Break
◆◆! it’s ringing
◆Case LINECALLSTATE_OFFERING

◆◆Break
◆◆! we are dialing
◆Case LINECALLSTATE_DIALING

◆◆Break
◆◆! we are connected

Call Center
To learn more about the use of TAPI, I recommend:

• Windows Telephony Programming by Chris Sells,

Addison-Wesley

This book is intended for C/C++ programmers, but the

samples are easy to understand. The author introduces

a class framework to encapsulate the TAPI. There are

samples for different programming problems (dialing,

answering, etc.). Sells even shows how to get an

answering machine to play and record WAV files.

• MSDN Online: http://msdn.microsoft.com/isapi/

msdnlib.idc?theURL=/library/psdk/tapi21/

tapilgl_8mw9.htm offers complete documentation of

all available functions.

• ftp://ftp.microsoft.com/developr/TAPI offers samples

and tools in C/C++.

• Usenet:

microsoft.public.win32.programmer.tapi

microsoft.public.win32.programmer.tapi.beta

—Christian Schubert

◆Case LINECALLSTATE_CONNECTED
◆◆Break

◆◆! we are on hold
◆Case LINECALLSTATE_ONHOLD

◆◆Break
◆◆! other party is busy
◆Case LINECALLSTATE_BUSY

◆◆Break
◆◆! call has been disconnected
◆Case LINECALLSTATE_DISCONNECTED

◆◆Break
◆Case LINE_REPLY

◆◆Break

The LINE_CALLSTATE message can be nicely used to
inform the user about the current status of the call. This is
done in the overriding callback function found in
frmControls. Here’s one small part, for instance:

 ◆Case LINECALLSTATE_DIALING
◆◆! Set status text with number
◆◆Call SalStatusSetText (hWndMessage,

"dialing " || sPhoneNumber || " ...")
◆◆! Add row to the list view
◆◆Set nItemIndex = AddOutgoing (sPhoneNumber,

"dialing")
◆◆! Enable hangup button
◆◆Call SalEnableWindow (pbHangUp)
◆◆Break

The LINE_REPLY message is needed to extract the call
handle after a call has been triggered (remember what I
said about asynchronous functions):

 ◆◆! we use a string buffer „sBuffer“
! instead of a number here

◆◆Set nRequestID = lineMakeCall(hOpenLine,
sBuffer, sPhoneNumber, nCountryCode, 0)

....
◆Case LINE_REPLY

◆If nParam1 = nRequestID
◆If nParam2 = 0

◆◆! Extract the numeric
! handle from the buffer

◆◆Set hCall = CStructGetLong (sBuffer, 0)
◆◆Break

There are certainly more messages sent to the callback
function. I have shown only the ones we use in the
sample.

A little troubleshooting
Programming with TAPI can give you trouble for several
reasons:

• TAPI isn’t installed properly or is the wrong version.
Though this isn’t likely, you should check out the
possibility. Also, a bug in the TAPI that comes with
Windows 95 prevents you from using the TAPI
functions once you shut it down.

• Not every TSP supports all functions. Call
lineGetDevCaps or lineGetAddressCaps (not part of
the sample) to determine whether your driver
supports the function.

Continues on page 12

Centura Pro February 2000 11www.ProPublishing.com

Sorting Tables List View Style
Sven O. Rimmelspacher

Put a little flash in your table

sorting!

and the table is sorted increasing by that column. If you
click again on the same column header, the table is sorted
descending, and so on. The function used for sorting a table
is SalTblSortRows(), and if you want to use this function
you need to know some things about the current table.

What you need
The SalTblSortRows() function takes the following three
parameters:

Window handle: hWndTbl ! The handle of a table window.

Nice, but we want more!
With that functionality you can now
sort a table by clicking on the column

header. But there are still some things to do. First, I don’t
like that the column I’ve clicked on is now selected. I want
to switch that selection off. Use SalTblSetColumnFlags(
hWndCol, COL_Selected, FALSE).

The feature we’re still missing is the ability to sort
ascending and descending alternately. Since we’ve created
a class with that sorting function and this should work for
all instances of this class, use an array to store the
information about the last sort. This array gets a flag for

H
ave you ever thought about
sorting a table list view-
style? List view style means

that you click on a column header

S Q L W i n d o w s

3 2

Number: nColumnID ! The column Identifier of the column by which to sort.
Number: nOrder ! The direction of the sort. Specify either:

TBL_SortDecreasing ! which is 1, we need that later
TBL_SortIncreasing ! which is 0, we need that later

The handle of the table window is usually easy; just use
hWndItem. The column ID can be retrieved using
SalTblQueryColumnID(), if you’ve clicked column’s
window handle. But how do you get this? Certainly, you
can use some Windows messages, but then you have to
find out which part of the table was clicked and evaluate

that click. If you browse through the
list of SAM_ messages, you find one
called SAM_ColumnSelectClick,
which seems to be the solution. But
before you can use it, you have to set

TBL_Flag_SelectableCols to TRUE using the
SalTblSetTableFlags() function.

One important thing about SalTblSortRows() is that
that table must be non-discardable and the Max Rows in
Memory property must be large enough to hold all the data.

Once the message is fired, the wParam contains the
window handle of the clicked column as a number. This
number has to be converted to a window handle using
SalNumberToWindowHandle(). Now you’ve got
everything you need. Retrieve the column ID as stated
above and call SalTblSortRows().

every column you click on and can
remember all click actions that are
taken. It’s just a Boolean array that
either contains the
TBL_SortDecreasing or
TBL_SortIncreasing flag, which is
toggled each time you click on the

header. The only special case we have here is that every
first time you click on a column (after clicking on
another), the sort direction is always ascending, so you
have to remember which column was clicked last.

For toggling I discovered that the TBL_Sort flags are 0
and 1, respectively, which leads to this easy toggling
mechanism:

◆◆ Set m_baColumnSort[nColumnId] =
1 - m_baColumnSort[nColumnId]

instead of the more complex:

◆ If m_baColumnSort[nColumnId] =
TBL_SortAscending
◆◆ Set m_baColumnSort[nColumnId] =

TBL_SortDescending
◆ Else

◆◆ Set m_baColumnSort[nColumnId] =
TBL_SortAscending

Now it works as you’d expect. I created a simple test
application that uses this mechanism and contains the
complete code for the table window class.

12 Centura Pro February 2000 www.ProPublishing.com

Listing 1. The sort function of the table window class.

◆ Function: __Sort
◆◆ Description: Sort the table contents by

the clicked column, called from SAM_ColumnSelectClick
IMPORTANT: If you want to use this feature,
the table must be non-discardable and
Max Rows in Memory must be large enough to hold all

the data
◆◆ Returns
◆ Parameters

◆◆ Window Handle: p_hWndCol ! the column
! that was clicked

◆ Local variables
◆◆ Number: nColumnId

◆ Actions
◆◆ ! deselect the column
 if you like to show that this column was
 clicked, just remove this line
◆◆ Call SalTblSetColumnFlags(p_hWndCol,

COL_Selected, FALSE)
◆◆ ! get the column ID
◆◆ Set nColumnId =

SalTblQueryColumnID(p_hWndCol)
◆◆ ! last column clicked once again?
◆ If nColumnId = m_nLastColumnId

◆◆ ! a little dirty but works
nice TBL_SortDecreasing is 0,

TBL_SortIncreasing is 1
◆◆ ! toggle sort direction
◆◆ Set m_baColumnSort[nColumnId] =

1 - m_baColumnSort[nColumnId]
◆ Else

◆◆ ! on first click sort always increasing
◆◆ Set m_baColumnSort[nColumnId] =

TBL_SortIncreasing
◆◆ ! remember last column
◆◆ Set m_nLastColumnId = nColumnId

◆◆ ! sort by this column
◆◆ Call SalTblSortRows(hWndItem, nColumnId,

m_baColumnSort[nColumnId])

CP

Download SORTROWS.ZIP from this issue’s table of
contents at www.propublishing.com, or find it on this
month’s companion disk.

Sven O. Rimmelspacher is a senior developer and project manager at

Pickert & Partner GmbH, a company with a quality management system.

He’s also the author of DocSal, a documentation tool for SAL code. He can

be reached at sven@rimpi.de.

app for now, but in Visual Basic or Active Server Pages
you can go wild with the imagination—simply pick any
Java class and use it as if it was COM. The wizard for
CTD will be ready soon. VB, ASP, Delphi, Word, Excel,
FoxPro and other automation clients don’t need wizards.”

With a lot of Pivato’s products, you need to think
about them for a few minutes before the full impact sinks
in. I asked him for some additional information, and he
said, “Jasper lets you use any Java class without
registering it or converting it. It supports polymorphic
calls, single dimension arrays of any type, and exceptions.
Used in VB or ASP, it gives you the impression of actually
working in Java. With Matterhorn it will be quite
impressive, too, thanks to the new features with objects.
JasperX is quite remarkable also; it embeds a Java frame
that can contain any Java visual class, including
windowless lightweight components such as Swing
classes. JasperX also is able to ‘listen’ to most Java events.”

Among his examples is a JasperX application that

• Not every TSP driver sends all callback messages. The
one I used in my tests was quite complete (AVM Fritz
Card) but the generic Microsoft Modem driver isn’t. It
omits the LINECALLSTATE_DISCONNECTED
message and sends the LINECALLSTATE_IDLE right
after disconnecting. CP

Download Callback2.zip from this issue’s table of
contents at www.propublishing.com or find it on this
month’s Companion Disk.

Christian Schubert works as Senior Developer at GODEsys GmbH, Mainz,

Germany. He has been using Centura products since 1993 and develops

sales management applications. Reach him at

christian.schubert@mainz.netsurf.de.

contains five Swing components in VB. Using those same
components in an ActiveX created in VB, IE displays that
ActiveX, aggregating the five components into a single one.

According to Pivato, “It’s extremely fast and it
supports multithreading. So far we’ve tested it with ASP,
VB, VBA, Delphi and CTD. I haven’t tried it, but since any
Java class can be used, this should open the doors to RMI
and CORBA as well as XML and many other free and
ready-made classes.”

I’ve tried the early sample, and it’s very intriguing.
See it at http://www.iceteagroup.com/download/aspj/
aspj10.exe.

Matterhorn?
As Pivato noted above, Matterhorn is designed to offer
many OOP improvements over the present SAL
language. The ability to assign object references,
constructors and destructors, and other features that have
been standard in many OOP languages for years are
coming to the next release of Centura Team Developer (or
whatever they decide to call it!). Beta testers are pleased to
have these tools available. We’ll bring you detailed
reviews and information at the earliest opportunity. CP

Return Call . . .
Continued from page 10

And the Winner Is . . .
Continued from page 2

Order Today!

Fax 530-265-0368

Phone 530-265-4082

Mail Pro Publishing
PO Box 2399
Nevada City, CA 95959

Web www.ProPublishing.com

__

Name

__

Company

__

Mailing Address Line 1

__

Mailing Address Line 2

__

City

__

State/Provence Zip/Postal Code

__

Country

__

Email address

__

Phone

Classics on CD!
Pro

I’ve been waiting
for this day!
Send me Centura Pro Classics on CD
immediately. Since I’m a subscriber
and I’m ordering by March 30, 2000, I’ll pay
only $99 for each! That’s a $50 savings for our
subscribers—plus free shipping worldwide!

Pro
Classics on CD!

Tired of racking your brain, sifting through issues, trying to find

that one programming technique you remember reading that’ll

save you two days of programming effort? Reach for Centura Pro

Classics.

We’ve archived every issue of Centura Pro since 1996 in

Adobe Acrobat format—completely searchable

by keyword, author, date, and program. What

could be easier? Order your copy before March 30, 2000 and

save $50!

• 300 articles, editorials, and tips

• 47 complete issues from 1996, 1997 1998, and 1999

• 132 sample applications and utilities

• Uncle Fred and How to Use OLE and ActiveX with Centura

• Latest version of Adobe Acrobat Reader

Quantity Sub-total

Non-subscribers $149 _______ $____________

Subscribers $99 _______ $____________

Order total $____________

 7.375% tax (CA state residents only) $____________

Shipping $____________

Total $____________

Payment Method

❑ Visa ❑ MasterCard ❑ AmEx

❑ Check enclosed

Name on credit card________________________________

Credit card number ________________________________

Expiration date ____________________________________

Signature___

Save
$50

CenturaCentura

FREE!

S e a r c h a b l e ! C o m p r e h e n s i v e ! L o n g O v e r d u e !

